ADVISORY ON THE USE OF THIS DOCUMENT

The information contained in this document has been developed solely for the purpose of providing general guidance to employees of the Goddard Space Flight Center (GSFC). This document may be distributed outside GSFC only as a courtesy to other government agencies and contractors. Any distribution of this document, or application or use of the information contained herein, is expressly conditioned upon, and is subject to, the following understandings and limitations:

- (a) The information was developed for general guidance only and is subject to change at any time;
- (b) The information was developed under unique GSFC laboratory conditions which may differ substantially from outside conditions;
- (c) GSFC does not warrant the accuracy of the information when applied or used under other than unique GSFC laboratory conditions;
- (d) The information should not be construed as a representation of product performance by either GSFC or the manufacturer;
- (e) Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the application or use of the information.

UNISYS

Ιo

Departmentharma.

From ode 311

Departmentahu

Subje 809

Radiation Report on ZQ04031 GPEP/PPL Part No. ZQ04031/62832H (32k x 8 SRAM) Date PPM-91-702

LocationNov. 7, 1991

Telepho & SFC

Location 731-8954

cc Lanham

S. Archer-Davies

T. Perry

A radiation evaluation was performed on ZQ04031 to determine the total dose tolerance of these parts. A brief summary of the test results is provided below. For detailed information, refer to Tables I through IV and Figure 1.

The total dose testing was performed on twelve parts using a Cobalt-60 gamma-ray source, while three parts were used as control samples. The twelve irradiated parts were separated into three test groups of four parts each, in order to test the effect of different biasing conditions on the parts during irradiation. Test Groups I and 2 (TG1 and TG2) were biased during irradiation using the circuit in Figure 1 with SW1 in the Static 1 and Static 2 positions, respectively. Test Group 3 (TG3) was left unbiased during irradiation. The total dose radiation steps for each group were 5, 10, 20, 40 and 80 krads*. The dose rate was between 0.25 and 1 krad/hour, depending on the total dose level (see Table II for radiation schedule). After 80 krads, parts were annealed for 48 and 168 hours at +25°C. After each radiation exposure and annealing treatment, parts electrically tested at +25°C, according to the test conditions and the specification limits listed in Table III. After the final annealing treatment, electrical measurements were also made at high and low temperature (+125°C and -55°C).

six functional tests were also performed on all parts after each radiation exposure and annealing treatment. Functional tests #1, #3 and #5 (at 10 MHz, 5 MHz and 2 MHz, respectively) consisted of writing and reading the following patterns: all ones, all zeros, checkerboard and inverse checkerboard. Functional tests #2 and #4, at frequencies of 10 MHz and 5 MHz, respectively, consisted of eight different test patterns: "1 On" march, row address, column address, sliding diagonally, ping-pong, surround, row galpat and column galpat. Functional test #6 consisted of writing a checkerboard pattern to the parts, reducing the VCC voltage from 5V to 2V for 55ns and then reading the pattern from the parts at 1 MHz., for a data retention test. For details of functional tests, see Table III.

All parts passed all electrical and functional tests from initial (pre-rad) up to and including 10 krads. After the 20-krad irradiation, all parts from TG1 and TG2 exhibited functional failures for some tests and one part from TG3 showed failure in one functional test (#6). After 40 krads, all parts from TG1 and TG2 failed some functional tests and one part from TG3 failed all functional tests. After 80 krads, a similar failure pattern was observed. For details, see Table IV.

Parts from TG3 passed all parametric tests throughout the radiation testing, however, parts from TG2 exceeded maximum specification limits for VIH, ISBL_CMS and timing tests at 80 krads, and parts from TG1 exceeded maximum specification limits for ICCDR at 40 krads. Other than in ISBL_CMS for parts in TG3, very little recovery was observed during annealing for 168 hours at +25°C. Parts in TG3 exhibited a reversal in recovery of timing measurements during high temperature measurements at +125°C after 168 hours annealing

Table IV provides the mean and standard deviation values for each parameter after different irradiation exposures and annealing steps for each of the three test groups.

Any further details about this evaluation can be obtained upon request. If you have any questions, please call me at (301) 731-8954.

^{*}In this report, the term "rads" is used as an abbreviation for rads (Si).

TABLE I. Part Information

Generic Part Number: ZQ04031

GPEP/PPL

Part Number: ZQ04031/62832H

GPEP/PPL

Control Number: 4101

Charge Number: C14082

Manufacturer: Elmo/Hitachi

Lot Date Code: 9107, 9101

Quantity Tested: 15

Serial Numbers of

Radiation Samples: 6, 11, 12, 14-16, 18, 19, 21-24

Serial Numbers of Control Samples:

Control Samples: 8, 9, 164

Part Function: 32k x 8-bit SRAM

Part Technology: CMOS

Package Style: DIP

Test Engineer: J. Lander

TABLE II. Radiation Schedule for ZQ04031

EVENTS	DATE
1) Initial Electrical Measurements	08/08/91
2) 5-KRAD IRRADIATION (0.25 KRADS/HOUR) POST-5-KRAD ELECTRICAL MEASUREMENT	08/19/91 08/20/91
3) 10-KRAD IRRADIATION (0.25 KRADS/HOUR) POST-10-KRAD ELECTRICAL MEASUREMENT	08/20/91 08/21/91
4) 20-KRAD IRRADIATION (0.5 KRADS/HOUR) POST-20-KRAD ELECTRICAL MEASUREMENT	08/21/91
5) 40-KRAD IRRADIATION (1.0 KRADS/HOUR) POST-40-KRAD ELECTRICAL MEASUREMENT	08/22/91 08/22/91
6) 80-KRAD IRRADIATION (0.59 KRADS/HOUR)	08/23/91 08/23/91
POST-80-KRAD ELECTRICAL MEASUREMENT 7) 48-HOUR ANNEALING	08/26/91
POST-48-HOUR ANNEAL ELECTRICAL MEASUREMENT	08/26/91 08/28/91
8) 168-HOUR ANNEALING POST-168-HOUR ANNEAL ELECTRICAL MEASUREMENT (+25°C) POST-168-HOUR ANNEAL ELECTRICAL MEASUREMENT (-55°C) POST-168-HOUR ANNEAL ELECTRICAL MEASUREMENT (+125°C)	08/28/91 09/03/91 09/04/91 09/05/91

Table III. Electrical Characteristics of ZQ04031

PART NO :	ZQ04031 628	132H	PART TYPE RAD-HARDE	: (32K : NED CMOS	x 8) Bit Static	RAM.	N : SI1042	3A.			
·		M	1		SPECIFICATIONS						
DISK LABET DIRECTORY			.4231								
			FUNCTIONAL				******				
PARAMETER	VCC VIL	VIH	CONDITION	S · PT	NS 1	THITS 250	55C & 12	 5C			
FUNCT # 1	5.0V 0.0V	5.00	FREQ = 10	MHz ALL	1/0	VOL<1.5V	7 , VOH)1.5	v			
FUNCT # 2	5.0V 0.0V	7 5.0V	FREQ = 10	MHz ALL	1/0	VOL(1.5V	, VOH)1.5	v			
FUNCT # 3	5.0V 0.0V	/ 5.0V	FREQ ≈ 5	MHz ALL	I/0	VOL(1.5V	7 , VOH)1.5	V			
FUNCT # 4	5.0V 0.0V	7 5.0V	$FREQ = 5 \mid$	MH≄ ALL	1/0	VQL(1.5V	7 , VOH>1.5	V			
FUNCT # 5	2.0V 0.0V	7 5.00	FREQ = 21	MHz ALL	I/O	VOL(1.5V	7 , VOH>1.5	V			
FUNCT # 6	5.0V 0.0V	7 5.0V	FREQ = 10 FREQ = 5 FREQ = 5 FREQ = 1 FREQ = 1	MHz ALL	1/0	VOL(1.5V	/ , VOH>1.5	V			
			DC FINGSTEI	KIC TEST	ນ						
PARAMETER	VCC VIL	VIH	CONDITION	S PIN	S L	IMITS 25C.		 C			
					EEE ==:		~ 220	_ ===			
VIH_4.5V	4.5V 0.0V	78.0 Y	FREQ# 1MH	Z INS		>+0.0V	, (+2.2V				
VIH_5.5V	5.5V 0.0V	0.80	FREQ 1MH FREQ 1MH FREQ 1MH FREQ 1MH FREQ 1MH LOAD -4M LOAD +8M LOAD +8M	Z INS		>+0.0v	, (+2.2V				
VIL_4.5V	4.5V 2.2V	7 4.50	FREO= 1MH	Z INS)+0.8V	, (+5.5V				
VIL_5.5V	5.5V 2.2V	7 5.5V	FREQ = 1MH	Z INS		>+0.BV	, (+5.5V				
VOHI.	4.5V 0.8V	7 2.2V	LOAD= -4M	A OUT	s	342.40	, (+5.5V				
VOH2	4.5V 0.0V	I 4.5V	LOAD= -4M	A OUT	_ S	547 40	, (+5.5V				
VOL1	4.5V 0.8V	7 2.2V	LOAD= +RM	A OUT	9) 40 OV	, (+0.4V				
VOL2	4.5V 0.0V	/ 4.51/	LOAD= +8M	יייונה ב	S S	740 OA	, NTO.4V				
IIH	5.50 0.00	, 5.5V	VIN = 5.5	V INS	_) () () () () ()	, (+0.4V				
IIL	5.5V 0.0V	, 5.50	VIN = 0.0 $VIN = 0.0$	A TWP		7-0.00A	, (+10UA				
ILOH					_	AU01-4	, <+0.0UA				
ILOL	5.5V U.U\	, 5.5.	VOUT= 5.5	y OUT	S S	>-10UA	, (+10UA				
			VOUT = 0.0	v our	5	>-ronv	, (+10UA				
TORK TORK	2.20 0.80	2.2V	CS+0E=2.2	v vcc		>+0.0MA					
TORK_TTL	5.5V 0.8V	2.2V	CS+0E=2.2	v vcc	!		AMOE+> ,				
TORL CMS	5.5V 0.0V	/ 5.3V	CS+0E=2.2	v vcc		>+0.0MA	, (+2MA				
TORM_CMR	5.5V 0.0\	7 5.3V	CS+0E=2.2	v vcc		AM0.0+<	, (+2MA				
TOCOK	3.0V 0.2V	2.87	CS+OE+WE=2	.BV VCC	!	AU0.0+<	, (+50UA				
TOUX	5.5V 0.07	/ 5.5V	CS+0E=2.2 CS+0E=2.2 CS+0E=2.2 CS+0E=2.2 CS+0E+WE=2 F=1MHZ,1K	BLK VCC							
ICCD	70.0 V2.c	V 5.5V	FRQ=18.2M	HZ VCC	!	>+0.0MV	, <+120MA				
			AC PARAMET					-			
PARAMETER	VCC VIL	VIH	CONDITI	 ONS	PINS	LIMITS 25	C,-55C & 1	 250			
		====		= 2 2 2 2 2 2 2			<u> </u>	===			
TAAT LH	4.50 n nv	7 AT	D-1 AMD- 170	MIS-1 ETT	Attimorano						
TAA1_HL	4.5V 0.QV	3.0V	F=1.0MHz,VC	MP=1.5V	OUTPUTS) Ons	, < 55ns				
TAA2_LH	5.5V 0.0V	3.0V	F=1.0MHz,VC F=1.0MHz,VC F=1.0MHz,VC	MP=1.5V	OUTPUTS) Ons	, (55ns				
TAA2 HL	5.5V 0.0V	3.0V	F=1.0MHz.VC	MP=1.5V	OTHERING) One	,				

Table III (cont.)

COMMENTS/EXCEPTIONS
(1) FUNCTIONAL TESTS ARE PERFORMED AT VCC=5.0V ONLY.
(2) FUNCTIONAL TESTS #1, #3 & #5 CONSISTS OF THE FOLLOWING PATTERNS: 1 - ALL_ONES 2 - ALL_ZEROS 3 - CHECKERBOARD 4 - INVERSED CHECKERBOARD
(3) FUNCTIONAL TESTS #2 & #4 CONSISTS OF THE FOLLOWING APG PATTERNS: 1 - "10N" MARCH
(4) FUNCTIONAL TESTS #6 CONSISTS OF THE FOLLOWING : # - WRITE CHECKERBOARD (ALL ADDRESSES) - REDUCE VCC TO 2.0V TO PERFORM DATA RETENTION TEST. - WAIT 55ns AT VCC = 2.0V - INCREASE VCC BACK TO 5.0V - READ CHECKERBOARD (ALL ADDRESSES)
(5) VIL & VIH WERE TESTED DYNAMICALLY @ 1MHZ FUNCTIONAL AND GO/NOGO DURING VOL & VOH DC TESTS.
(6) ICCX: STAND BY QUIESCENT CURRENT MEASUREMENT FOR EVERY 1024 ADDRESS LOCATIONS. CONSIST OF THE FOLLOWING PROCEDURE: (a) - WRITE SEROES (ALL ADDRESSES). (b) - WRITE ONES TO THE FIRST 1024 ADDRESSES. (c) - PERFORM AN ICCSB MEASUREMENTS. (d) - WRITE ZEROES TO THE FIRST 1024 ADDRESSES. (c) - REPEAT STEPS (b)-)(d) FOR THE NEXT 1024 ADDRESSES AND SO ON, FOR A TOTAL OF 32 READINGS (32K ADDRESSES).
(7) TESTS NOT PERFORMED: - CIN , CCLKL & COUT TEST WRITE/READ CYCLE TIMING PERFORMED GO/NOGO @ 10.0MHz (FUNCT #1 & #2) ONLY ADDRESS ACCESS TIME PROP. DELAYS WERE PERFORMED (TAA TESTS) ALL OTHER AC TESTS ARE NOT BEING PERFORMED WITHIN THIS PROGRAM.
(8) THIS PROGRAM TESTS FOR CONTINUITY AND ORIENTATION TESTS. ALSO THIS PROGRAM WILL PERFORM AN OPPOSITE STATE VOL & VOH TEST.
HARDWARE REQUIREMENTS TEST TEMPERATURES
DEVICE CONFIGURATION : 28-PIN DIP (0.300") +25 DEG. C. [X] S-50 LOAD BOARD #17 : SWITCH/JUMP PIN 14 TO -55 DEG. C. [X] GND. +125 DEG. C. [X]
PROGRAMMER : JUAN R. LANDER DATE : 06-24-91

TABLE IVa: Summary of Elec. Measurements After
Total Dose Exposures and Annealing for ZQ04031 Group I (Static I, biased) 1/2/

				Total Dose Exposure (TDE) (krads)														Ann	eali	ig		
			0	l	5			10		20	40		80		48 hours		168 bou		our 168 hou		168	hour
	Spec.	Limi	(Pre-	-Rad)	k		1				i				Г	5°C		5°C	1	5°C	+12	
Parameters	min	тах	mean	зđ	mean	sd	mean	sd	mean	ತ ೆ	mean	sd	теап	ad	mean	sđ	mean	ađ	mean	sd	mean	sd
FUNC1			4/0		4/0		4/0		3/1		074		0/4		*074		0/4		4/0		0/4	
FUNC2	ļ <u>.</u>		470		470		4/0		1/3		074		0/4		0/4		074		2/2		0/4	
FUNC3			4/0		470		4/0		173		074		0/A		0/4		0/4		3/1		0/4	Ti-
FONC4			470		4/0		5/0		1/3		015		0/4		0/4		074		0/4		0/4	
FUNC5			4/0		4/0		4/0		1/3		9/4		074		0/4	-	0/4		3/1		0/4	
FUNC 6			470		470		47.7		0/4		0/4		0/4		024		074		074		0/4	
VIH 4.5V V	0	2.2	1,51	.01	1.50	0	1 31	.02	1.48	.01	1.35	.03	1.53	.02	1.56	0	1,58	.01	1.58	.04	1.2.1B	.02
VIH_5.5V V	0	2.2	1,50	.01	2,51	.02	1.50	.01	1.50	.02	1,55	.04	1,54	.02	1,57	.01	1.58	.01	1,56	.03	1,37	.C2 i
VIL_4.5V V	0.8	5.5	1.22	.01	1.23	.02	1,22	,03	1.22	.03	22	.01	1.19	.01	1:20	.01	1,21	.02	1.31	_04	1.05	.01
VIL_5.5V V	C.B	5.5	1.24	.01	1.23	.03	1,22		1.20	,01	1,21	.01	1,19	.01	1,20	,01	1,20	.01	1,29	.03	1,08	, 05
VOH1 V	2.4	5.5	3.02	.02	3.02	.01	3.02	.01	3.02	.01	3,02	. 02	3,01	.01	3.02	.02	3.02	.02	2,97	.02	3.07	.02
VOH2 V	2.4	5.5	3.02	.02	3,02	.01	1,02	.02	3,02	.02	3.02	.02	3,01	.01	3.02	.02	3.02	,G2	2,97	.02	3.07	.02
VOL1 V	0	0.4	0.19	, C1	0.20	.01	0.19	.01	0.19	.01	1.19	.01	0.19	.01	0.15	.01	0,19	.01	0.12	.01	0.30	.02
VOL2 V	0	0.4	0.19	.01	0.25	.01	0,19	.01	0,19	.01	0,19	.01	0.19	.01	0.15	.01	0,19	.01	0,12	.01	0.30	.02
IIH uA	0	10	0	-	0	-	0	-	0	-			0	-	0	-	0	-	0.86		0.02	.01
IIL uA	-10	0	0		0		G.		0	-	C.	-	-6.2	-	-,05	0.1	01	0.1		0.1	-,43	0.4
ILOH uA	-10	10	0		C	-	0		O		e C	-	0.	-	0		U	- 1	0.22	0.4	0.02	.01
ILOL uA	0 [10	2	-	0	-	Q.	-	0	-	0	-	O	-	D	-	0	-	01	.04	03	0
ISBL_TTL mA	0	30	2.13	.03	2.13	.04	2.13	.02	2.14	.03	2,13	,07	2.36	0.2	2,18	0.2	2.17	0.3	2.68	-04	************	C.1
ISBH_TTL mA	٥	30	12,2	.08	12.2	.08	12.2	.07	12,2	.08	2,2	0.3	12,6	0.9	12.0	0.9	12,0	0.9	15.1	.03	9,58	.03
ISBL_CMS #A		2	0	-	0	-	0	-	Ø	-	0.03	.06	0.26	0.4	0	-	Ü	-	O.	_	0.45	.06
ISBH_CMS mA	0 [2	0	-	0	-	0		C		0,13	0.2	0.56	0.8	C	-	Q	*	0	-	0,45	.06
ICCDR 11A	0 1	50	0	- 8	*O**	. ~ 8	0	-	0		98.0	170	445	656	0	-	0	-	C	-	296	43
ICCX nA	0	2	0	- 1	Q.	. 9	0	-	0		0.03	.06	0,26	.36	0	.01	C	-	0	.01	Q.47	.05
ICCD mA	0	- 34	***************************************	- 13	******		**********	0.3	14.6	0.1	34.5	0.5	34.7	1.0	34 2	0.2	33.8	0.3	40.6	0.2	31,3	0.2
TAA1_LE ns	0					· · · · ·	22 . C	17	10"000.00	~	22,.3		0.00000000	0.8	22.3	0.8	22.3	0.8	19.8		*******	1.2
TAAL HL ns	0									0.9	22,6			0.9	2, 6	0.9	22.7	0.9	18.4	_		1,1
TAA2_LH ns	0	* * *	(402	- **	*****		V-022/00002		2000		8.7			1.1	13.7	0.9	18.7	0.9	16,6	0.7	23.2	1.4
TAA2 HL ns	0	55	20.2	0.7	21.1	0.7	22.0	0.7	1.0	0.7	2 . 0	0.7	23.1	0.7	1.1	0,7	21.0	0.7	17.2	0.7	25.9	0.8

Notes:

^{1/} The mean and standard deviation values were calculated over the twelve parts irradiated in this testing. The control samples remained constant throughout the testing and are not included in this table.
2/ #/# in the functional test column means number passed/number failed.

TABLE IVb: Summary of Elec I Measurements After
Total Dose Exposures and Annealing for ZQ04031 Group 2 (Static II, biased) 1/2/

					- 	Tota	l Dos	e Ex	posur	e (T	DE)	krad	3)		Annealing										
			1	0	5		1	10		20 40		80		48 hour		48 hour		rs 168 b		168 hour		r 168 hou:		158	hour
	Spe	ec. Lim	i (Pre	-Rad)		İ								•	5°C		5°C		5°C	+12				
Paramete	rs mi	n max	mean	sd.	mean	sd	mean	sd	mean	sd	mean	ı sd	mean	1 3 đ	mean	sd	mean		mean		mean				
FUNC1			4/0	1	4/0		470		0/4		0/4	000	074		074		0/6		3/1	***	0/4				
FUNC2		_	470		4/0		4/3		0/4		0/4		C/4	3	0/5		C/4		0/4		0/4				
FUNC3			4/0		4/0	<u></u>	470		0/4		0/4		0/4	32	C74		0/4		0/4		074				
FUNC4			470		470		4/C		0/4		0/4		0/4		0/4		0/4		0/4		0/4	į – – į			
FUNC5		_	4/0		4/0		47C		0/4		0/4		0/4		0/4		074		0/4		0/4				
EGNC6			4/0		4/0		4/0		074		0/4		0/4		0/4		0/4		074		0/4				
	<u>v !</u>	0 2.2	2145	.01	1.50	0	1,49	,01	1.48	.01	1,47	.01	2,24	1.3	1.49	.01	1.48	.02	1.56	.03	2,19	1.3			
	٧	0 2.2	1149	.01	1,50	.01	1,49	.01	1.48	.01	1.46	_01	2,49	1.7	1,49	.01	1.48	,02	1.58	.04	2,42	1.8			
112_1751	v 0,		1.23	.01	1.24	.01	1,20	.01	1,22	.01	1.20	.02	0.89		1.19	,01	1.21	.01	1.28	.02	0.84	0.5			
722_4444	v 0.		1,22	.02	1,25	.02	1,22	.03	1,22	_	1,20	.02	0.90	0.5	1.20	.01	1,21	.01	1,28	.03	0,83	0.5			
1	v 2.		3,02		3.03	.01	3,03	01،	3.02	.01	3.02	.01	3.32	.02	3.03	.01	3.03	.01	2.97	.01	3.09	.01			
	V 2.	4 5.5	3.03	.01	3.03		3.03	.01	3,02	.02	3	.01	3,02	.02	2,85	.07	3,03	.01	2,97	.01	3.09	.01			
VOLI	<u>۷ </u>	0.4	0.19	.01	0.20	.01	0.19	.01	0,19	.01	0.19	.01	0.28	0.5	0.19	.01	0.19	.01	C.12	.01	0.30	.01			
VOL2	<u> </u>	0 0.4	0.15	.01	0,20	. 01	0.19		0,19	.01	0,19	.01	0,28	0,5	0.28	0,5	0.19	.01	0.12		0,30	.01			
IIH U		0 10	C		0		0		0.88	.01	3.62	.02	0.2	94.7	0,18	1.6	.01		0.97	5.3	0,44	0.3			
IIL u	A -2	<u> </u>	0		0		0			0,3	-16	17.6	ē	200	*44	61	*,01	.01	26	0.9	-2,3	2.5			
ILOH u	A -1	0 10	0		0	-	0	-	002	.01	11.,	36.0	33.0	169	0.53	2.9	Ø	0	0.16	0.4	0.34	C.4			
ILCL ui		0 10	0		Q		0	_	-,22	0.5	-13	23.4	-17	44.8	95, 7	17	- 24	0.5	4,02	.06	#£ .4	0.6			
ISBL_TTL m	<u> </u>	30	2,12		2,13	.04	2,12	.03	2.12	.03	2.15		2.21	.09	2,45	0.6	2.12	.03	2,66		2.63	.05			
ISBH_TTL ad	- 	30	12.1	.01	12.0		12*0	.09	12.9	.09	11.8	.06	11.6	.04	11.6	0.2	11,5	.01	15.6	.14	9.29	.05			
ISBL CMS m	`	2			0		0		0	-	0.42	.07	11.9	0.9	1.43	0.7	C.18	.13	*:0::	-	0.57	.07			
ISBH_CMS mJ		2	.0	-	0	-	C	•	0	- 8	0		.025	.04	0.08	.14	0	-	0	-	0.51	.06			
ICCOR UA	- 		C	-	0	-	G	*	0	-	0	-	8.25	14.3	23.5	41	0		C	_	312	27			
ICCX m2	1 (-	0	-	0	-	0	-	0	- 8	D. 28	.04	1,759	0,8	2,33	0.8	0,17	.12	0	-	0,60	.06			
ICCD mA			33.5	13		0.3	34.8	0.2	33,8	0.3	24.6	0.2	35,4	0.2	36.4	2.7	3411	0.2	41.2	0.2	31.4	0.1			
TAAl_LH ns	+		22.7							0.8	22,5	0.8	3 2 5	4E5	22.5	0.8	22.5	8.0	19.7	0.6		2B5			
TAAl_HL ns	+					1/3		0.9	22.7	0.9	22.7	1.0	524	2E5	29.6	15.9	22.9	0.9	18.3	0.6		2E5			
TAA2_LE ns	0		OCCUPACION NO.	- 10		2		- ' - 20			9.8	0.8	225	4 E 5	19.8	0.B	1879	0.8	16.6		****	9E4			
TAA2_HL ns	D	55	20.2	0.7	21 11 (0.7	21.1	0.7	21.0 0	7.7	22.0	0.7	6E4	2B5	21.0	1.2	21.1		3.00	- 15	(2002) (000)	2E4			

Notes:

^{1/} The mean and standard deviation values were calculated over the twelve parts irradiated in this testing. The control samples remained constant throughout the testing and are not included in this table.
2/ #/# in the functional test column means number passed/number failed.

TABLE IVe: Summary of Electronial Measurements After
Total Dose Exposures and Annealing for ZQ04031 Group 3 (unbiased) 1/2/

						Total Dose Exposure (TDE) (krads)											Annealing									
			(j	5		" " "	10		20		40		80		48 hours			7		168	hour				
	•		(Pre	-Rad	ľ]		+25°C		5°C	-55°C		+12					
Parameters	min	max	mean	зđ	mean	sd	mean	ь¢	mean	5 ಡೆ	mear	3d	mean	sd.	mean	sd	mean	ತ ಡೆ	mean		mean	sd				
FUNC1	<u> </u>	<u> </u>	9/0		6/0	<u> </u>	4/C		4,40		4/10		4/0	8 .	47G		470		470		3/1					
FUNC2	<u></u>		4/0		470		4/0		4/0		3/0		4/3		1/3		142		34/0		371					
FUNC3			4/C	<u> </u>	470		4/0		4/0		4/4		470		4/0		470		4/0		3/1					
FUNC 4	ļ	<u> </u>	470		4/0		4/0		4/0		·371		1/3		1/3%		1/3		4/0		3/1					
FUNC5		\Box	4/0		4/0		4/0		4/0		9/0		1/3		2/2		3/1		4/0		3/1					
FUNC6			4/0		470		4/0		3/4		371		1/2		1/3		1/3		4/0		3/1					
VIH_4.5V V	0	2,2	1:49	.02	1.50	.02	1,50	.02	1,49	.02	1.46	.02	1,46	.01	1,46	.02	1.48	.01	1.58	.03	1.40	.02				
VIH_5.5V V	0	2.2	1,49	.02	1,51	.01	1.50	.02	3.49	.02	1.4B	.01	1.47	.01	1.47	.01	1,47	.02	1.57	.03	1,40	.03				
VIL_4.5V V	8,0	5.5	1.24	.02	1,25		1.22	.02	3.24	.04	1.22	.02	1,19	.01	1.19	.02	1.19	.01	1.27	.01	1.09	.04				
VIL_5.5V V	0.8	5.5	1,24	.03	1,24	.03	1,27	.02	1,23	.02	1,22	.02	1,20	.02	1,20	.03	1.20	.02	1.29	.04	1,09	.03				
VOH1 V	2.4	5.5	3.0	.02	9,0	.02	3.0	,02	3.0	.02	3.0	.02	3.01	.02	3,01	.02	3:01	.02	2.95	.C2	3.C6	.03				
VOR2 V	2.4	5.5	3.C	.02	3.D	.02	3.0	.02	3.0	.02	3,0	.02	3,01	.02	3.01	, 02	3.01	.02	2.95	,02	3.06	.02				
VCD1 V	û	0.4	0.19	.01	0.19	.01	0.29	.01	0.19	.01	0.19	.01	0.19	.01	0.19	.01	0.19	.01	0.12	.01	0.29	.01				
VOL2 V	0	0.4	0,19	.01	0,19	.01	D.19	.01	0.19	.01	0.19	.01	0.19	.01	0.19	.01	0.19	.01	0,12	$\overline{}$	0,29	.01				
IIH uA	0	10	D		C	-	0	-	0	-	⊛C.	-	0		0	- 1	0		0.04	0.2	o	.01				
Au JIL	-10	0	D		0		0	-	D	-	0	-	0		0	~	0		02	0.1	01	.01				
Au HOll	-10	10	0	-	0	-	0	-	0		0		0	-	20	-	o	~	0.01	.03	0.04	-06				
ILOL UA	0	10	0	~	0	_	C		Q.		0		0		D	-	Q	-	D1	.02	01	.C1				
ISBL_TTL mA			2:09	.04	2.08		2.08		2.09	ثارت	2.08	.04	2,08	.04	2.07	.04	2.08	0.1	2.57	0.1	2,30	0.1				
ISBH_TTL mA	0		12.1			0.1	722277829177.4	- 3	100000		11.9	0.2	11.6	0,2	11.6	0.2	11.6	0.2	15. 5	0,3	99.30	.02				
ISBL_CMS #A	C	2	0	-	0	-	0	- 🖁	•	- 8	•		0		0	- 8	Ū	- 4	Œ	-	0.23	0.1				
ISBH_CMS mA		2	O		0		0	- [0	<u>-</u>	0	<u>- j</u>	0	- [D		Q I	-	0	- :	0.23	0.1				
ICCDR UA	0	50	0		0		0	-	0	- 8	U	- 8	0	- 8	0	- 8	0	-	ð	-	134	60				
ICCX mA	0	2 8	0 33.1	- 8	0	- 8	0	<u> </u>	0	- 8	0	17	2011	}	0		0	-	0	-	0,23	0.1				
ICCD mA	0		-		33.6				·····		33.8		33.7		. 2007:000		7	0.2	40.5	0.3	10.9	0.2				
TAA1_LH ns	0 D I	37	rour follows		· acquacqu						22,3	- 7	22.5				22270.0071			0.7	28,4	1.5				
TAA1_HL ns	 +	- 1	200 2239		**************************************	9//		-	*****	- 50	22.6		23.0	- 0		- (1)		1.0	18.3		1200	1.7				
TAA2 LH ns	0			- 11	25/30299.00		72792075	7 7 70	0(420.422	- 7	18.8				100000000000000000000000000000000000000	- 48	74-277-001	- 10	Caracony, 1	0.7	3,9	1.7				
TAA2_HL ns	<u>,</u>	55 P	20,2	0.7	21 00 (0.7	21.0	0.8	0.9	0.7	1.0	0.8	21.3	0,8	21.0	0.8	1.0	0.8		0.7 🏻	7.1	1,5				

Notes:

^{1/} The mean and standard deviation values were calculated over the twelve parts irradiated in this testing. The control samples remained constant throughout the testing and are not included in this table.
2/ #/# in the functional test column means number passed/number failed.

Radiation Bias Circuit for 2004031 Figure 1.

NOTES:

Designed By: JL 05/07/91

Apparal By: KK Stylai

- ALL RESISTORS ARE 2KD ± 5%
- Vcc= 6 V + 0V -0.25V

 $V_{cc/2} = 2.5 \text{ y \pm 3.0 \text{ y}}$

TA = + 125 to 100 During BORN-IN .. Live TET. TA = +25 Duning Radiation.

STATIC I & II CIRCUIT, AND RADIATION BIAS CIRCUIT. FIGURE